Modules with fusion and implication based over distributive lattices: Representation and duality
نویسندگان
چکیده
Abstract In this paper, we study the class of modules with fusion and implication based over distributive lattices , or FIDL - for short. We introduce concepts FIDL-subalgebra FIDL-congruence as well notions simple subdirectly irreducible FIDL-modules. give a bi-sorted Priestley-like duality FIDL-modules moreover, an application such duality, provide topological bi-spaced description FIDL-congruences. This result will allows us to characterize
منابع مشابه
Distributive Lattices with a Generalized Implication: Topological Duality
In this paper we introduce the notion of generalized implication for lattices, as a binary function⇒ that maps every pair of elements of a lattice to an ideal. We prove that a bounded lattice A is distributive if and only if there exists a generalized implication ⇒ defined in A satisfying certain conditions, and we study the class of bounded distributive lattices A endowed with a generalized im...
متن کاملFUZZY ORDERED SETS AND DUALITY FOR FINITE FUZZY DISTRIBUTIVE LATTICES
The starting point of this paper is given by Priestley’s papers, where a theory of representation of distributive lattices is presented. The purpose of this paper is to develop a representation theory of fuzzy distributive lattices in the finite case. In this way, some results of Priestley’s papers are extended. In the main theorem, we show that the category of finite fuzzy Priestley space...
متن کاملfuzzy ordered sets and duality for finite fuzzy distributive lattices
the starting point of this paper is given by priestley’s papers, where a theory of representation of distributive lattices is presented. the purpose of this paper is to develop a representation theory of fuzzy distributive lattices in the finite case. in this way, some results of priestley’s papers are extended. in the main theorem, we show that the category of finite fuzzy priestley space...
متن کاملDistributive Lattices, Bipartite Graphs and Alexander Duality
A certain squarefree monomial ideal HP arising from a finite partially ordered set P will be studied from viewpoints of both commutative algbera and combinatorics. First, it is proved that the defining ideal of the Rees algebra of HP possesses a quadratic Gröbner basis. Thus in particular all powers of HP have linear resolutions. Second, the minimal free graded resolution of HP will be construc...
متن کاملDistributive Lattices with Quantifiers: Topological Representation
We give a representation of distributive lattices with the existential quantifier in terms of spectral spaces, which is an alternative to Cignoli’s representation in terms of Priestley spaces. Then we describe dual spectral spaces of subdirectly irreducible and simple Q-distributive lattices and prove that the variety QDist of Q-distributive lattices does not have the congruence extension prope...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematica Slovaca
سال: 2022
ISSN: ['0139-9918', '1337-2211']
DOI: https://doi.org/10.1515/ms-2022-0020